
Impala: A Modern, 
Open-Source SQL 

Engine for 
Hadoop

Marcel Kornacker
Cloudera, Inc.



Agenda

● Goals; user view of Impala
● Impala performance
● Impala internals
● Comparing Impala to other systems



Impala Overview: Goals

● General-purpose SQL query engine:
○ works both for analytical and transactional/single-

row workloads
○ supports queries that take from milliseconds to hours

● Runs directly within Hadoop:
○ reads widely used Hadoop file formats
○ talks to widely used Hadoop storage managers 
○ runs on same nodes that run Hadoop processes

● High performance:
○ C++ instead of Java
○ runtime code generation
○ completely new execution engine that doesn't build 

on MapReduce



User View of Impala: Overview

● Runs as a distributed service in cluster: one Impala 
daemon on each node with data

● User submits query via ODBC/JDBC, Impala CLI or Hue 
to any of the daemons

● Query is distributed to all nodes with relevant data
● If any node fails, the query fails
● Impala uses Hive's metadata interface, connects to 

Hive's metastore
● Supported file formats:

○ Parquet columnar format (more on that later)
○ sequence files and RCfile with snappy/gzip 

compression
○ Avro data files
○ uncompressed/lzo-compressed text files 



User View of Impala: SQL

● SQL support:
○ patterned after Hive's version of SQL
○ essentially SQL-92, minus correlated subqueries
○ INSERT INTO ... SELECT ...
○ only equi-joins; no non-equi joins, no cross products
○ ORDER BY requires LIMIT
○ Limited DDL support 

● Functional limitations:
○ no custom UDFs, file formats, SerDes
○ no beyond SQL (buckets, samples, transforms, 

arrays, structs, maps, xpath, json)
○ only hash joins; joined table has to fit in aggregate 

memory of all executing nodes



User View of Impala: HBase

● Functionality highlights:
○ support for SELECT, INSERT INTO ... SELECT ..., 

and INSERT INTO ... VALUES(...)
○ predicates on rowkey columns are mapped into 

start/stop row
○ predicates on other columns are mapped into 

SingleColumnValueFilters
● But: mapping of HBase table into metastore table 

patterned after Hive
○ all data stored as scalars and in ascii
○ the rowkey needs to be mapped to a single string 

column



User View of Impala: HBase

● Roadmap:
○ full support for UPDATE and DELETE
○ storage of structured data to minimize storage and 

access overhead
○ composite row key encoding, mapped into an 

arbitrary number of table columns



Impala Single-User Performance

● Benchmark: 20 queries from TPC-DS, in 3 categories:
○ interactive: 1 month
○ Reports: several months
○ deep analytics: all data

● Main fact table: 5 years of data, 1TB, stored as snappy-
compressed sequence files

● Cluster: 20 machines, 24 cores each



Impala Single-User Performance

● Speed-up over Hive:
○ interactive: 25x - 68x
○ Reports: 6x - 56x
○ deep analytics: 6x - 55x



Impala Multi-User Performance

● Benchmark for query latency in multi-user env:
○ same dataset and workload as single-user benchm.
○ same hardware config
○ multiple clients issue queries in parallel



Impala Multi-User Performance

● Query throughput (in queries per second) in multi-user 
environment:
○ scaling up workload (not # of machines)
○ qps increases until cluster is saturated
○ qps stable at that point, system doesn't waste work



Impala Architecture

● Two binaries: impalad and statestored
● Impala daemon (impalad) - N instances

○ handles client requests and all internal requests 
related to query execution

● State store daemon (statestored) - 1 instance
○ provides name service and metadata distribution



Impala Architecture

● Query execution phases
○ request arrives via odbc/jdbc
○ planner turns request into collections of plan 

fragments
○ coordinator initiates execution on remote impalad 

nodes
● During execution

○ intermediate results are streamed between 
executors

○ query results are streamed back to client
○ subject to limitations imposed to blocking operators 

(top-n, aggregation)



Impala Architecture: Query Execution
Request arrives via odbc/jdbc

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

SQL App

ODBC
Hive

Metastore HDFS NN Statestore

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

SQL request



Impala Architecture: Query Execution
Planner turns request into collections of plan fragments
Coordinator initiates execution on remote impalad nodes

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

SQL App

ODBC

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

Hive
Metastore HDFS NN Statestore



Impala Architecture: Query Execution
Intermediate results are streamed between impalad's
Query results are streamed back to client

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

SQL App

ODBC
Hive

Metastore HDFS NN Statestore

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

Query Planner

Query Coordinator

Query Executor

HDFS DN HBase

query 
results



Query Planning: Overview

● 2-phase planning process:
○ single-node plan: left-deep tree of plan operators
○ partitioning of operator tree into plan fragments for 

parallel execution
● Parallelization of operators:

○ all query operators are fully distributed
● Join order = FROM clause order

Post-GA: cost-based optimizer



Query Planning: Single-Node Plan

● Plan operators: Scan, HashJoin, HashAggregation, 
Union, TopN, Exchange

● Example:
SELECT t1.custid, SUM(t2.revenue) AS revenue
FROM LargeHdfsTable t1
JOIN LargeHdfsTable t2 ON (t1.id1 = t2.id)
JOIN SmallHbaseTable t3 ON (t1.id2 = t3.id)
WHERE t3.category = 'Online'
GROUP BY t1.custid
ORDER BY revenue DESC LIMIT 10



Query Planning: Single-Node Plan

HashJoin

Scan: t1

Scan: t3

Scan: t2

HashJoin

TopN

Agg

● Single-node plan for example: 



Query Planning: Distributed Plans

● Goals:
○ maximize scan locality, minimize data movement
○ full distribution of all query operators (where 

semantically correct)
● Parallel joins:

○ broadcast join: join is collocated with left input; right-
hand side table is broadcast to each node executing 
join
-> preferred for small right-hand side input

○ partitioned join: both tables are hash-partitioned on 
join columns
-> preferred for large joins

○ cost-based decision based on column 
stats/estimated cost of data transfers



Query Planning: Distributed Plans

● Parallel aggregation:
○ pre-aggregation where data is first materialized
○ merge aggregation partitioned by grouping columns

● Parallel top-N:
○ initial top-N operation where data is first materialized
○ final top-N in single-node plan fragment



Query Planning: Distributed Plans

● In the example:
○ scans are local: each scan receives its own fragment
○ 1st join: large x large -> partitioned join
○ 2nd scan: large x small -> broadcast join
○ pre-aggregation in fragment that materializes join 

result
○ merge aggregation after repartitioning on grouping 

column
○ initial top-N in fragment that does merge aggregation
○ final top-N in coordinator fragment



Query Planning: Distributed Plans

HashJoinScan: t1

Scan: t3

Scan: t2

HashJoin

TopN

Pre-Agg

MergeAgg

TopN

Broadcast

Broadcast

hash t2.idhash t1.id1

hash t1.
custid

at HDFS DN

at HBase RS

at coordinator



Metadata Handling

● Impala metadata:
○ Hive's metastore: logical metadata (table definitions, 

columns, CREATE TABLE parameters)
○ HDFS NameNode: directory contents and block 

replica locations
○ HDFS DataNode: block replicas' volume ids

● Caches metadata: no synchronous metastore API calls 
during query execution

● impalad instances read metadata from metastore at 
startup

● REFRESH [<tbl>]: selectively reloads metadata at 
single impalad instance

● Post-GA: metadata distribution through statestore
● Post-GA: HCatalog and AccessServer



Impala Execution Engine
● Written in C++ for minimal execution overhead
● Internal in-memory tuple format puts fixed-width data at 

fixed offsets
● Uses intrinsics/special cpu instructions for text parsing, 

crc32 computation, etc.
● Runtime code generation for "big loops"



Impala Execution Engine

● More on runtime code generation
○ example of "big loop": insert batch of rows into hash 

table
○ known at query compile time: # of tuples in batch, 

tuple layout, column types, etc.
○ generate at compile time: loop that inlines all 

function calls, contains no dead code, minimizes 
branches

○ code generated using llvm



Impala's Statestore

● Central system state repository
○ name service (membership)
○ Post-GA: metadata
○ Post-GA: other scheduling-relevant or diagnostic 

state
● Soft-state

○ all data can be reconstructed from the rest of the 
system

○ cluster continues to function when statestore fails, 
but per-node state becomes increasingly stale

● Sends periodic heartbeats
○ pushes new data
○ checks for liveness



Statestore: Why not ZooKeeper 

● ZK is not a good pub-sub system
○ Watch API is awkward and requires a lot of client 

logic
○ multiple round-trips required to get data for changes 

to node's children
○ push model is more natural for our use case

● Don't need all the guarantees ZK provides:
○ serializability
○ persistence
○ prefer to avoid complexity where possible

● ZK is bad at the things we care about and good at the 
things we don't



Comparing Impala to Dremel

● What is Dremel:
○ columnar storage for data with nested structures
○ distributed scalable aggregation on top of that

● Columnar storage in Hadoop: Parquet
● Distributed aggregation: Impala
● Impala plus Parquet: a superset of the published 

version of Dremel (which didn't support joins)



More about Parquet

● What it is:
○ columnar container format for all popular 

serialization formats: Avro, Thrift, Protocol Buffers
○ successor to Doug Cutting's Trevni
○ co-designed by Cloudera and Twitter
○ open source; hosted on github

● Features:
○ fully shredded nested data; repetition and definition 

levels similar to Dremel's ColumnIO
○ column values stored in native types (bool, int<x>, 

float, double, byte array)
○ support for index pages for fast lookup
○ extensible value encodings (run-length encoding, 

dictionary, ...)



Comparing Impala to Hive

● Hive: MapReduce as an execution engine
○ High latency, low throughput queries
○ Fault-tolerance model based on MapReduce's on-

disk checkpointing; materializes all intermediate 
results

○ Java runtime allows for easy late-binding of 
functionality: file formats and UDFs.

○ Extensive layering imposes high runtime overhead
● Impala:

○ direct, process-to-process data exchange
○ no fault tolerance
○ an execution engine designed for low runtime 

overhead



Impala Roadmap: 2013
● Additional SQL:

○ UDFs
○ SQL authorization and DDL
○ ORDER BY without LIMIT
○ analytic/window functions
○ support for structured data types

● Improved HBase support:
○ composite keys, complex types in columns,

index nested-loop joins,
INSERT/UPDATE/DELETE

● Runtime optimizations:
○ straggler handling
○ join order optimization
○ improved cache management
○ data collocation for improved join performance



Impala Roadmap: 2013
● Better metadata handling:

○ automatic metadata distribution through statestore
● Resource management:

○ goal: run exploratory and production workloads in 
same cluster, against same data, without impacting 
production jobs



Try it out!

● Impala 1.0 was released on 04/30
● We have packages for:

○ RHEL6.2/5.7
○ Ubuntu 10.04 and 12.04
○ SLES11
○ Debian6

● Questions/comments? impala-user@cloudera.org
● My email address: marcel@cloudera.com


