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Impala Overview: Goals

● General-purpose SQL query engine:
○ works both for analytical and transactional/single-

row workloads
○ supports queries that take from milliseconds to hours

● Runs directly within Hadoop:
○ reads widely used Hadoop file formats
○ talks to widely used Hadoop storage managers 
○ runs on same nodes that run Hadoop processes

● High performance:
○ C++ instead of Java
○ runtime code generation
○ completely new execution engine that doesn't build 

on MapReduce



User View of Impala: Overview

● Runs as a distributed service in cluster: one Impala 
daemon on each node with data

● User submits query via ODBC/JDBC, Impala CLI or Hue 
to any of the daemons

● Query is distributed to all nodes with relevant data
● If any node fails, the query fails
● Impala uses Hive's metadata interface, connects to 

Hive's metastore
● Supported file formats:

○ Parquet columnar format (more on that later)
○ sequence files and RCfile with snappy/gzip 

compression
○ Avro data files
○ uncompressed/lzo-compressed text files 



User View of Impala: SQL

● SQL support:
○ patterned after Hive's version of SQL
○ essentially SQL-92, minus correlated subqueries
○ INSERT INTO ... SELECT ...
○ only equi-joins; no non-equi joins, no cross products
○ ORDER BY requires LIMIT
○ Limited DDL support 

● Functional limitations:
○ no custom UDFs, file formats, SerDes
○ no beyond SQL (buckets, samples, transforms, 

arrays, structs, maps, xpath, json)
○ only hash joins; joined table has to fit in aggregate 

memory of all executing nodes



User View of Impala: HBase

● Functionality highlights:
○ support for SELECT, INSERT INTO ... SELECT ..., 

and INSERT INTO ... VALUES(...)
○ predicates on rowkey columns are mapped into 

start/stop row
○ predicates on other columns are mapped into 

SingleColumnValueFilters
● But: mapping of HBase table into metastore table 

patterned after Hive
○ all data stored as scalars and in ascii
○ the rowkey needs to be mapped to a single string 

column



User View of Impala: HBase

● Roadmap:
○ full support for UPDATE and DELETE
○ storage of structured data to minimize storage and 

access overhead
○ composite row key encoding, mapped into an 

arbitrary number of table columns



Impala Single-User Performance

● Benchmark: 20 queries from TPC-DS, in 3 categories:
○ interactive: 1 month
○ Reports: several months
○ deep analytics: all data

● Main fact table: 5 years of data, 1TB, stored as snappy-
compressed sequence files

● Cluster: 20 machines, 24 cores each



Impala Single-User Performance

● Speed-up over Hive:
○ interactive: 25x - 68x
○ Reports: 6x - 56x
○ deep analytics: 6x - 55x



Impala Multi-User Performance

● Benchmark for query latency in multi-user env:
○ same dataset and workload as single-user benchm.
○ same hardware config
○ multiple clients issue queries in parallel



Impala Multi-User Performance

● Query throughput (in queries per second) in multi-user 
environment:
○ scaling up workload (not # of machines)
○ qps increases until cluster is saturated
○ qps stable at that point, system doesn't waste work



Impala Architecture

● Two binaries: impalad and statestored
● Impala daemon (impalad) - N instances

○ handles client requests and all internal requests 
related to query execution

● State store daemon (statestored) - 1 instance
○ provides name service and metadata distribution



Impala Architecture

● Query execution phases
○ request arrives via odbc/jdbc
○ planner turns request into collections of plan 

fragments
○ coordinator initiates execution on remote impalad 

nodes
● During execution

○ intermediate results are streamed between 
executors

○ query results are streamed back to client
○ subject to limitations imposed to blocking operators 

(top-n, aggregation)



Impala Architecture: Query Execution
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Impala Architecture: Query Execution
Planner turns request into collections of plan fragments
Coordinator initiates execution on remote impalad nodes
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Impala Architecture: Query Execution
Intermediate results are streamed between impalad's
Query results are streamed back to client
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Query Planning: Overview

● 2-phase planning process:
○ single-node plan: left-deep tree of plan operators
○ partitioning of operator tree into plan fragments for 

parallel execution
● Parallelization of operators:

○ all query operators are fully distributed
● Join order = FROM clause order

Post-GA: cost-based optimizer



Query Planning: Single-Node Plan

● Plan operators: Scan, HashJoin, HashAggregation, 
Union, TopN, Exchange

● Example:
SELECT t1.custid, SUM(t2.revenue) AS revenue
FROM LargeHdfsTable t1
JOIN LargeHdfsTable t2 ON (t1.id1 = t2.id)
JOIN SmallHbaseTable t3 ON (t1.id2 = t3.id)
WHERE t3.category = 'Online'
GROUP BY t1.custid
ORDER BY revenue DESC LIMIT 10



Query Planning: Single-Node Plan
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Query Planning: Distributed Plans

● Goals:
○ maximize scan locality, minimize data movement
○ full distribution of all query operators (where 

semantically correct)
● Parallel joins:

○ broadcast join: join is collocated with left input; right-
hand side table is broadcast to each node executing 
join
-> preferred for small right-hand side input

○ partitioned join: both tables are hash-partitioned on 
join columns
-> preferred for large joins

○ cost-based decision based on column 
stats/estimated cost of data transfers



Query Planning: Distributed Plans

● Parallel aggregation:
○ pre-aggregation where data is first materialized
○ merge aggregation partitioned by grouping columns

● Parallel top-N:
○ initial top-N operation where data is first materialized
○ final top-N in single-node plan fragment



Query Planning: Distributed Plans

● In the example:
○ scans are local: each scan receives its own fragment
○ 1st join: large x large -> partitioned join
○ 2nd scan: large x small -> broadcast join
○ pre-aggregation in fragment that materializes join 

result
○ merge aggregation after repartitioning on grouping 

column
○ initial top-N in fragment that does merge aggregation
○ final top-N in coordinator fragment



Query Planning: Distributed Plans
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Metadata Handling

● Impala metadata:
○ Hive's metastore: logical metadata (table definitions, 

columns, CREATE TABLE parameters)
○ HDFS NameNode: directory contents and block 

replica locations
○ HDFS DataNode: block replicas' volume ids

● Caches metadata: no synchronous metastore API calls 
during query execution

● impalad instances read metadata from metastore at 
startup

● REFRESH [<tbl>]: selectively reloads metadata at 
single impalad instance

● Post-GA: metadata distribution through statestore
● Post-GA: HCatalog and AccessServer



Impala Execution Engine
● Written in C++ for minimal execution overhead
● Internal in-memory tuple format puts fixed-width data at 

fixed offsets
● Uses intrinsics/special cpu instructions for text parsing, 

crc32 computation, etc.
● Runtime code generation for "big loops"



Impala Execution Engine

● More on runtime code generation
○ example of "big loop": insert batch of rows into hash 

table
○ known at query compile time: # of tuples in batch, 

tuple layout, column types, etc.
○ generate at compile time: loop that inlines all 

function calls, contains no dead code, minimizes 
branches

○ code generated using llvm



Impala's Statestore

● Central system state repository
○ name service (membership)
○ Post-GA: metadata
○ Post-GA: other scheduling-relevant or diagnostic 

state
● Soft-state

○ all data can be reconstructed from the rest of the 
system

○ cluster continues to function when statestore fails, 
but per-node state becomes increasingly stale

● Sends periodic heartbeats
○ pushes new data
○ checks for liveness



Statestore: Why not ZooKeeper 

● ZK is not a good pub-sub system
○ Watch API is awkward and requires a lot of client 

logic
○ multiple round-trips required to get data for changes 

to node's children
○ push model is more natural for our use case

● Don't need all the guarantees ZK provides:
○ serializability
○ persistence
○ prefer to avoid complexity where possible

● ZK is bad at the things we care about and good at the 
things we don't



Comparing Impala to Dremel

● What is Dremel:
○ columnar storage for data with nested structures
○ distributed scalable aggregation on top of that

● Columnar storage in Hadoop: Parquet
● Distributed aggregation: Impala
● Impala plus Parquet: a superset of the published 

version of Dremel (which didn't support joins)



More about Parquet

● What it is:
○ columnar container format for all popular 

serialization formats: Avro, Thrift, Protocol Buffers
○ successor to Doug Cutting's Trevni
○ co-designed by Cloudera and Twitter
○ open source; hosted on github

● Features:
○ fully shredded nested data; repetition and definition 

levels similar to Dremel's ColumnIO
○ column values stored in native types (bool, int<x>, 

float, double, byte array)
○ support for index pages for fast lookup
○ extensible value encodings (run-length encoding, 

dictionary, ...)



Comparing Impala to Hive

● Hive: MapReduce as an execution engine
○ High latency, low throughput queries
○ Fault-tolerance model based on MapReduce's on-

disk checkpointing; materializes all intermediate 
results

○ Java runtime allows for easy late-binding of 
functionality: file formats and UDFs.

○ Extensive layering imposes high runtime overhead
● Impala:

○ direct, process-to-process data exchange
○ no fault tolerance
○ an execution engine designed for low runtime 

overhead



Impala Roadmap: 2013
● Additional SQL:

○ UDFs
○ SQL authorization and DDL
○ ORDER BY without LIMIT
○ analytic/window functions
○ support for structured data types

● Improved HBase support:
○ composite keys, complex types in columns,

index nested-loop joins,
INSERT/UPDATE/DELETE

● Runtime optimizations:
○ straggler handling
○ join order optimization
○ improved cache management
○ data collocation for improved join performance



Impala Roadmap: 2013
● Better metadata handling:

○ automatic metadata distribution through statestore
● Resource management:

○ goal: run exploratory and production workloads in 
same cluster, against same data, without impacting 
production jobs



Try it out!

● Impala 1.0 was released on 04/30
● We have packages for:

○ RHEL6.2/5.7
○ Ubuntu 10.04 and 12.04
○ SLES11
○ Debian6

● Questions/comments? impala-user@cloudera.org
● My email address: marcel@cloudera.com


